M88vin

Nền tảng đa phương tiện game m88vin hàng đầu việt nam

You are not logged in.

#1 2020-08-14 20:20:55

RebbecaSpe
Member
From: Netherlands, Arnhem
Registered: 2020-08-14
Posts: 40
Website

The Main Challenge Use all three numbers in each of the five groups below

with + – × ÷ available, to try and make the target of 23.
But for one of the groups it is impossible, which one.
1    4    6   2    5    5   3    4    5   3    4    6   3    5    6  Full details of our number & strategy board game, click Mathematically Possible.
The 7puzzle Challenge The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
The 1st & 7th rows of the playing board contain the following fourteen numbers: 2   4   9   11   14   15   22   24   27   30   40   70   72   77 Which three different numbers have a sum of 77.
The Lagrange Challenge   Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.
For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are THIRTEEN different ways to make 230 when using Lagrange’s Theorem

How many can you find.
The Mathematically Possible Challenge Using 2, 4 and 8 once each, with + – × ÷ available, which is the ONLY number is it possible to make from the list below.
7    14    21    28    35    42    49    56    63    70 #7TimesTable    The Target Challenge  Can you arrive at 230 by inserting 2, 3, 5, 6 and 7 into the gaps below.
◯×(â—¯+â—¯)²+◯×◯ = 230   Answers can be found here.
Click Paul Godding for details of online maths tuition.
.

Offline

Board footer

Powered by FluxBB